

Recent progress in photonic quantum computation

Ernesto F. Galvão

Research group leader Quantum and Linear-Optical Computation International Iberian Nanotechnology Laboratory Braga, Portugal

& Associate Professor (on leave) Physics Department Universidade Federal Fluminense - Niterói, Brazil

Lapson Research Counci Santhindly Security Security

FUNDAÇÃO para a Ciência e a Tecnologia

Quantum and Linear-Optical Computation group

International Iberian Nanotechnology Laboratory (INL)

- Inter-governmental Lab in Braga, Portugal
- Member states: Spain, Portugal
- RTO Research and Technology Organization
- About 450 staff/associates
- Food and environment monitoring, renewable energy, health, ICT, quantum materials, q. computation

Quantum and Linear-Optical Computation group

- Established at INL in July, 2019. Research lines:
- Principles enabling photonic quantum computation
- Information processing with integrated photonic chips
- Resources in different models of quantum computation

Ernesto Galvão (Group leader)

Rui Soares Barbosa (Staff Researcher)

Carlos Fernandes (PhD student)

Antonio Molero

Alexandra da Costa Alves (Master's)

www.inl.int

Ana Filipa Carvalho (Master's)

Mafalda da Costa Alves (Master's)

Michael Oliveira

(PhD student)

José Guimarães (Master's)

(Master's)

Outline

- Quantum computer platforms: current state-of-play
- Quantum advantage: towards useful QC
- Photonic quantum computation
 - Boson sampling devices
 - Q. advantage from Gaussian Boson Sampling
- Photonic route towards scalable QC

Quantum computation: current status

Ion Traps

Few ions trapped in EM fields, addressed individually by lasers

- Electronic levels = qubits
- Motional degrees of freedom = qubit-qubit interactions
- Long history: atomic clocks. Extremely good gates, up to 32 qubits

Key companies: IonQ (USA), Honeywell (USA), Alpine Q. Technologies (Austria)

This field gave Dave Wineland his 2012 Physics Nobel Prize

Montage: ion trap, trapped ions (IonQ) – set to become first "pure" QC company floating in the stock market, valuation > US\$ 2 billion

Quantum computation: current status

Anyons

Exotic statistics of excitations in 2D electron gases in solids

- 2020 witnessed experimental signatures of anyons
- Naturally robust against decoherence = destruction of superpositions due to external interference

Key companies: Microsoft

H. Bartolomei *et al.*, Science 368 (6487), 173 (2020)

Y. He et al., Nature 571, 371 (2019)

Electrons in solid state

Electron spin of phosphorus atoms in silicon

- Two-qubit gates demonstrated
- Could leverage existing Si industry processes for scaling up

Key companies: Silicon Quantum Computing (Australia)

Quantum computation: current status

Superconducting chips

Superconductor dynamics is governed by QM. Transmon qubits (2007) can be coupled and read out, and are the basic units in QCs based on superconductors

- Up to 72 qubits, although noise so far prevents deep circuits
- Recent demonstration of quantum computational advantage by the Google Quantum AI team (2019)
- For hands-on experience on quantum computers: <u>https://qiskit.org/</u> (IBM's SDK)

Key companies: IBM Q Experience, Google Quantum AI, Rigetti Computing, IQM

Google CEO Sundar Pichai with QC cryostat

Image: Arute et al., Nature 574, 505 (2019)

Theory:

- Scalable, error-corrected QCs will provide computational break-throughs in data security, optimization, materials science, q. chemistry, etc.
- Open problem: can we obtain practical advantage with near-term Noisy, Intermediate-Scale Quantum (NISQ) devices?

Experiment:

- Small-scale QC prototypes using various physical platforms
- Demonstrations of computational advantage for contrived, useless tasks
- Still no practical advantage over classical computers
- Still a long way towards error-correction & large scale QC

Images from: Arute *et al.*, Nature **574**, 505 (2019)

- 53 superconducting qubits, connected to nearest neighbors in square lattice
- Up to 20 cycles of randomly chosen one- and twoqubit gates (random = hard instance). 2-qubit gates tile sequentially, 1-qubit gates randomly picked from 3-gate set {sqrt(X), sqrt(Y), sqrt((X+Y)/sqrt(2))}

- 2-qubit gates: fSim
- 2 fSim gates (+ single qubit gates) give a CZ

$$\operatorname{Esim}(\theta, \phi) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \cos(\theta) & -i\sin(\theta) & 0\\ 0 & -i\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 0 & e^{-i\phi} \end{bmatrix}$$

• fSim gates chosen as they are harder than CZs to simulate using a Feynman path integral approach – circuits half as deep for the same simulation cost

Device verification: use of cross-entropy fidelity

$$\mathcal{F}_{\text{XEB}} = 2^n \langle P(x_i) \rangle_i - 1$$

- P(x_i) are calculated probabilities of experimental outcomes
- F correlated with how often we sample high-probability outcomes
- F=1 for ideal distribution, F=0 for uniform distribution

Test circuits can be simulated classically:

Images from: Arute *et al.*, Nature **574**, 505 (2019)

- Patch circuit: 2-qubit gates between two halves of computer not implemented.
- Elided circuit: only a few early 2-qubit gates are removed.

Images from: Arute *et al.*, Nature **574**, 505 (2019)

- Estimated simulation run-time of largest circuits on supercomputer: 10000 years
- Estimated energy cost: 1 petawatt hour
- IBM controversy: simulation possible in a few days?

Images from: Arute et al., Nature 574, 505 (2019)

Closing the "Quantum Supremacy" Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer

Yong (Alexander) Liu^{1,3}, Xin (Lucy) Liu^{1,3}, Fang (Nancy) Li^{1,3}, Haohuan Fu^{2,3}, Yuling Yang^{1,3}, Jiawei Song^{1,3}, Pengpeng Zhao^{1,3}, Zhen Wang^{1,3}, Dajia Peng^{1,3}, Huarong Chen^{1,3}, Chu Guo⁴, Heliang Huang⁴, Wenzhao Wu³, and Dexun Chen^{2,3}

> ¹Zhejiang Lab, Hangzhou, China ²Tsinghua University, Beijing, China ³National Supercomputing Center in Wuxi, Wuxi, China ⁴Shanghai Research Center for Quantum Sciences, Shanghai China

> > October 28, 2021

Abstract

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a threelevel parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10×10 (qubits)×(1+40+1)(depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

- Estimated simulation run-time of largest circuits on supercomputer: 10000 years
- Estimated energy cost: 1 petawatt hour
- IBM controversy: simulation possible in a few days?

Follow-up: Zuchongzhi chips (2020)

- Superconducting chips at University of Science and Technology of China (Shanghai), led by Jian-Wei Pan
- Same connectivity, similar random circuits
- Zuchongzhi 1.0 56 qubits, 20 cycles
- Simulation estimated to take 8 years on supercomputer
- Zuchongzhi 2.1 66 qubits, 24 cycles
- Simulation estimated to take 4.8*10⁴ years

arXiv:2106.14734, arXiv:2109.03494

Zuchongzhi 2.1 chip, from arXiv:2109.03494

Follow-up: computational chemistry on Sycamore (2020)

Rubin et al., Science 369, 1084–1089 (2020)

- Application: ground-state energy estimation using variational methods variational quantum eigensolver (VQE) using Hartree-Fock technique
- Demonstration on Sycamore: [Rubin et al., Science 369, 1084–1089 (2020)]
- Quantum simulation of H chain (up to 12 atoms), and diazine $(C_4H_4N_2)$ isomerization
- Right: Hartree-Fock orbitals of H12 mapped onto qubits. Variational circuit optimized to minimize energy, meanfield approximation
- In some cases, chemical accuracy achieved

• Still simulable, but demonstration of error mitigation and calibration techniques. Step towards larger-scale simulators

Path encodings

Dual-rail: single photon in two propagation modes, labelled 0/1

• arbitrary single-photon gates easy – beam splitters (BS) and phase shifters:

- Arbitrary single-qubit unitaries implementable with a BS and phase shifters
- The problem is two-qubit unitaries how to make the two photons interact?
 - One way: medium with large cross-Kerr non-linearity (hard to do)
 - Measurement-induced non-linearities: key idea of Knill-Laflamme-Milburn (KLM) proposal

What kind of QC can we build with linear optical elements only?

Non-interacting photons in linear interferometers

 Input to output creation operators mapped by unitary:

$$a_k^+ \to \sum_j U_{j,k} a_j^+$$

- Any *m*-mode linear interferometer can be aecomposed in
 - 2-mode beam splitters;
 - single-mode phase shifters.

- Output probabilities given by permanents of matrices associated with U:
 - Example: the probability of an output of one photon per mode, with an input of one photon per mode, is:

$$p = \left| per(U) \right|^2$$

• The permanent is similar to the determinant, but with no negative signs. The calculation is intractable (*#P-hard*).

- Two identical photons simultaneously arrive at a beam splitter
- If the beam splitter is unbalanced, we have
 - T= transmissivity
 - *R*=reflectivity
 - Probability that the two photons exit in different modes is

$$p = |per(U)|^2 = |T^2 - R^2|^2$$

Hong-Ou-Mandel effect: for balanced beam-splitter T=R, and p=0Photons always leave the BS in the same mode: 0

$$U = \begin{array}{ccc} & & & \\ & & \\ & & \\ & e & iR & T & e \end{array} \begin{array}{c} & & & \\ &$$

$$\dot{\mathbf{e}}_{T} \quad iR \quad \ddot{\mathbf{C}}$$

Photonic Boson Sampling

- Given *m*-mode interferometer description *U*, sample from the output distribution of:
 - 1. Input of *n* indistinguishable photons;
 - 2. Multi-photon interference in interferometer;
 - 3. Yes/no detection at output modes.

- Classical exact simulation would imply a highly unlikely computational complexity result ("collapse of the polynomial hierarchy")
- Even approximate simulation is hard, modulo a couple of reasonable conjectures.
- Advantages: about 45 photons would be non-trivial to simulate. Step towards reconfigurable, universal photonic quantum computation
- **Disadvantages**: it doesn't solve a "useful" problem; certification can be difficult.

Experimental progress: first small-scale experiments (2013)

η₁ η_5 127 µm φ_9 φ_2 η 127 µm 3' η_6 3 η_2 127 µm φ_{11} η_8 φ_4 η₄ 127 µm 5' 10 cm

Spring et al., Science 339, 798 (2013) [Walmsley group]

Tillmann et al, Nat. Photon. 7, 540 (2013) [Walther group]

Broome et al., Science 339, 794 (2013) [White group]

Crespi et al., Nat. Photon. 7, 545 (2013) [Sciarrino group]

- Interference of 3,4 photons in integrated photonic chips with 5,6 modes
- Verified that probabilities are given in terms of permanents of 3x3 matrices

Integrated multi-mode interferometers

- Challenge: stability of complex interferometers
- Solution: integrated interferometers with waveguides inscribed with lasers in glass:
 - Beam splitting by evanescent-field coupling between close waveguides
 - Phase shifs implemented by differences in path length
 - 3D design technology

Experimental progress: reconfigurability (2015-)

Fully reconfigurable 6-mode interferometer [Carolan et al., Science 349, 711 (2015)]

- Full reconfigurability in seconds by thermo-optic phase shifters
- 6-photon boson sampling (only 15 events)
- Automated experiments

Universal 12-mode reconfigurable chip [Taballione et al., Materials for Quantum Technology 1 (3), 035002 (2021)]

- Silicon nitrite
- 128 tunable thermo-optic phase shifters

Experimental progress: current state-of-the-art (2019)

- Boson Sampling experiment at University of Science and Technology of China (Chao-Yang Lu's group) - H. Wang et al., Phys. Rev. Lett. 123, 250503 (2019)
- quantum-dot micropillar, demultiplexed solid state source
- Up to 14 photons detected
- Still simulable on a conventional computer

Photonic quantum advantage: Gaussian boson sampling (2020-21)

- Gaussian Boson Sampling experiment @ Univ. of Science and Technology of China (Hefei) - H. Wang et al., Science 370 (6523), 1460 (Dec. 2020), preprint arXiv:2106.15534 [quant-ph]
- GBS is a variation of boson sampling using squeezed light as inputs (higher event rate)
- Up to 73 photons, 100 modes
- v2: up to 113 photons, 144 modes (June 2021)
- Simulation on supercomputer estimated to be 10²⁴ times slower

- Open questions:
 - improved classical simulation, "faking" events using supercomputer
 - Future: higher complexity regime, encoding qubits into continuous variables for scalable computation (Gottesman-Kitaev-Preskill encoding) – approach of Canadian company Xanadu

Growing photonic cluster states for MBQC

 Using one-way model to advantage: building large resource states from probabilistic operations; at once or on the go

from: Briegel *et al., Nat. Phys.* 5 (1), 19 (2009)

from: O'Brien, Science 318, 1467 (2007)

• Schemes for adapting imperfect clusters for MBQC

from: Browne et al., New J. Phys. 10, 023010 (2008)

Universal QC with measurement-based quantum computation

- Measurement-based quantum computation (MBQC) relies only on
 - entangling gates;
 - adaptive single-qubit measurements.
- Teleportation-based gates states are teleported (and transformed) step by step

from: O'Brien, Science 318, 1467 (2007)

- MBQC is uniquely suited to photonic quantum computation:
 - Photons fly away fast...
 - ...so they are stored for short times, measured, and information teleported to fresh photons.
- Approach being pursued by US company PsiQuantum (> 3 billion US\$ valuation)

Universal QC with measurement-based quantum computation

- MBQC using 3-photon GHZ-state sources on-chip: [Rudolph, arXiv:160708535]
 - (2+1)-dimensional architecture
 - probabilistic entangling gates sufficient, if above percolation threshold (essential use of error correction)
 - adaptive single-qubit measurements (delay lines)
- Key advantages: room-temperature chips (small cryo units for e.g. detectors), compatible with major chip foundry techniques, i.e. potentially scalable

ERC Advanced Grant QU-BOSS ("Quantum advantage via non-linear Boson Sampling") 2020-2025

- PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)
- Partners: Istituto de Fotonica e Nanotecnologie (IFN-CNR – Milan), INL

H2020 FETOPEN PHOQUSING ("Photonic Quantum Sampling Machine")

2020-2024

- PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)
- Partners: CNR (IT), CNRS (FR), Sorbonne Univ. (FR), Veriqloud (FR), QuiX BV (NL), INL
- Development of complex linear and non-linear interferometers
 - Theoretical characterization of photonic indistinguishability, resources such as contextuality and coherence
 - Scalability of photonic QC, MBQC ideas
- Noisy, Intermediate-Scale Quantum (NISQ) computational applications: variational algorithms, randomness manipulation, cryptography, quantum chemistry

Conclusion

• Q. computers promise extreme computational speed-up for many problems

... and they're already much faster than supercomputers at some contrived tasks

VS

- Q. computational advantage has (arguably) been demonstrated using superconducting chips and photonic systems
- Next steps:
 - Practical applications in small-scale q. simulation, optimization, graph theory
 - Scientific, technological, and engineering challenges to scale up QCs and incorporate quantum error correction for general applicability

Thank you for your attention!