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Quantum and Linear-Optical Computation group

International Iberian Nanotechnology Laboratory (INL)
- Inter-governmental Lab in Braga, Portugal
- Member states: Spain, Portugal
- RTO – Research and Technology Organization
- About 450 staff/associates
- Food and environment monitoring, renewable energy, health, ICT, 

quantum materials, q. computation
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• Established at INL in July, 2019. Research lines:

- Principles enabling photonic quantum computation
- Information processing with integrated photonic chips
- Resources in different models of quantum computation
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Outline

• Quantum computer platforms: current state-of-play

• Quantum advantage: towards useful QC

• Photonic quantum computation

• Boson sampling devices

• Q. advantage from Gaussian Boson Sampling

• Photonic route towards scalable QC



Quantum computation: current status

Ion Traps
Few ions trapped in EM fields, addressed individually by lasers

• Electronic levels = qubits

• Motional degrees of freedom = qubit-qubit interactions

• Long history: atomic clocks. Extremely good gates, up to 32 qubits

Key companies: IonQ (USA), Honeywell (USA), Alpine Q. Technologies (Austria)

This field gave Dave Wineland his 

2012 Physics Nobel Prize

Montage: ion trap, trapped ions (IonQ) – set to become first “pure” QC 

company floating in the stock market, valuation > US$ 2 billion



Quantum computation: current status

Anyons
Exotic statistics of excitations in 2D electron gases in solids

• 2020 witnessed experimental signatures of anyons

• Naturally robust against decoherence = destruction of 

superpositions due to external interference

Key companies: Microsoft

H. Bartolomei et al., Science 

368 (6487), 173 (2020)

Electrons in solid state
Electron spin of phosphorus atoms in silicon

• Two-qubit gates demonstrated

• Could leverage existing Si industry processes for 

scaling up

Key companies: Silicon Quantum Computing 

(Australia)

Y. He et al., Nature 571, 371 (2019)



Quantum computation: current status

Superconducting chips
Superconductor dynamics is governed by QM. Transmon qubits (2007) can be coupled 

and read out, and are the basic units in QCs based on superconductors

• Up to 72 qubits, although noise so far prevents deep circuits

• Recent demonstration of quantum computational advantage by the Google Quantum 

AI team (2019)

• For hands-on experience on quantum computers: https://qiskit.org/ (IBM’s SDK)

Key companies: IBM Q Experience, Google Quantum AI, Rigetti Computing, IQM

Image: Arute et al., Nature 574, 505 (2019)Google CEO Sundar Pichai with QC cryostat

https://qiskit.org/


Quantum computation: current status

Theory:

• Scalable, error-corrected QCs will provide 

computational break-throughs in data security, 

optimization, materials science, q. chemistry, etc.

• Open problem: can we obtain practical advantage 

with near-term Noisy, Intermediate-Scale Quantum 

(NISQ) devices?

Experiment: 

• Small-scale QC prototypes using various physical platforms

• Demonstrations of computational advantage for contrived, useless tasks

• Still no practical advantage over classical computers

• Still a long way towards error-correction & large scale QC



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

• 53 superconducting qubits, connected to nearest 

neighbors in square lattice

• Up to 20 cycles of randomly chosen one- and two-

qubit gates (random = hard instance). 2-qubit gates 

tile sequentially, 1-qubit gates randomly picked from 

3-gate set {sqrt(X), sqrt(Y), sqrt((X+Y)/sqrt(2))}

• fSim gates chosen as they are harder than CZs to simulate using a Feynman path 

integral approach – circuits half as deep for the same simulation cost

• 2-qubit gates: fSim

• 2 fSim gates (+ single 

qubit gates) give a CZ



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

Device verification: use of cross-entropy fidelity

• P(x_i) are calculated probabilities of experimental outcomes

• F correlated with how often we sample high-probability outcomes

• F=1 for ideal distribution, F=0 for uniform distribution

Test circuits can be 

simulated classically:

• Patch circuit: 2-qubit 

gates between two 

halves of computer not 

implemented.

• Elided circuit: only a few 

early 2-qubit gates are 

removed.



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

• Estimated simulation run-time of largest circuits on supercomputer: 10000 years

• Estimated energy cost: 1 petawatt hour

• IBM controversy: simulation possible in a few days?



Google Quantum AI experiment (2019)

Images from: Arute et al., Nature 574, 505 (2019)

• Estimated simulation run-time of largest circuits on supercomputer: 10000 years

• Estimated energy cost: 1 petawatt hour

• IBM controversy: simulation possible in a few days?



Follow-up: Zuchongzhi chips (2020)

arXiv:2106.14734, arXiv:2109.03494

• Superconducting chips at University of 

Science and Technology of China 

(Shanghai), led by Jian-Wei Pan

• Same connectivity, similar random circuits

• Zuchongzhi 1.0 – 56 qubits, 20 cycles

- Simulation estimated to take 8 years on 

supercomputer

• Zuchongzhi 2.1 – 66 qubits, 24 cycles

- Simulation estimated to take 4.8*104 years Zuchongzhi 2.1 chip, from arXiv:2109.03494

https://arxiv.org/abs/2106.14734


Follow-up: computational chemistry on Sycamore (2020)

Rubin et al., Science 369, 1084–1089 (2020)

• Application: ground-state energy estimation using variational methods – variational

quantum eigensolver (VQE) using Hartree-Fock technique

• Demonstration on Sycamore: [Rubin et al., Science 369, 1084–1089 (2020)]

• Quantum simulation of H chain (up to 

12 atoms), and diazine (C4H4N2) 

isomerization

• Right: Hartree-Fock orbitals of H12 

mapped onto qubits. Variational circuit 

optimized to minimize energy, mean-

field approximation

• In some cases, chemical accuracy 

achieved

• Still simulable, but demonstration of error mitigation and calibration techniques. 

Step towards larger-scale simulators



Quantum computing with light – discrete variables

Path encodings

Dual-rail: single photon in two propagation modes, labelled 0/1

• arbitrary single-photon gates easy – beam splitters (BS) and phase shifters:
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• Arbitrary single-qubit unitaries implementable with a BS and phase shifters

• The problem is two-qubit unitaries – how to make the two photons interact?

• One way: medium with large cross-Kerr non-linearity (hard to do)

• Measurement-induced non-linearities:

key idea of Knill-Laflamme-Milburn (KLM) proposal

What kind of QC can we build with linear optical elements only?

q



• Input to output creation operators 

mapped by unitary:

• Any m-mode linear interferometer can be decomposed in
- 2-mode beam splitters;

- single-mode phase shifters.

• Output probabilities given by permanents of matrices associated with U:

- Example: the probability of an output of one photon per mode, with an input of 

one photon per mode, is:

  

p = per(U)
2

• The permanent is similar to the determinant, but with no negative signs. 

The calculation is intractable (#P-hard). 

Non-interacting photons in linear interferometers



Example: Hong-Ou-Mandel effect

• Two identical photons simultaneously arrive 

at a beam splitter

U =
T iR

iR T
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• If the beam splitter is unbalanced, we have

• T= transmissivity

• R=reflectivity

  

p = per(U)
2

= T 2 -R2
2

• Probability that the two photons exit in different modes is

Hong-Ou-Mandel effect: for balanced beam-splitter T=R, and p=0

Photons always leave the BS in the same mode:

or



• Given m-mode interferometer description U, 

sample from the output distribution of:

1. Input of n indistinguishable photons;

2. Multi-photon interference in interferometer;

3. Yes/no detection at output modes.

• Classical exact simulation would imply a highly unlikely computational complexity 

result (“collapse of the polynomial hierarchy”)

• Even approximate simulation is hard, modulo a couple of reasonable conjectures.

• Advantages: about 45 photons would be non-trivial to simulate. Step towards 

reconfigurable, universal photonic quantum computation

• Disadvantages: it doesn’t solve a “useful” problem; certification can be difficult.

Aaronson/Arkhipov arxiv:1011.3245

Photonic Boson Sampling



Spring et al., Science 339, 798 (2013) [Walmsley group] Tillmann et al, Nat. Photon. 7, 540 (2013) [Walther group]

Broome et al., Science 339, 794 (2013) [White group] Crespi et al., Nat. Photon. 7, 545 (2013) [Sciarrino group]

• Interference of 3,4 photons in integrated photonic chips with 5,6 modes

• Verified that probabilities are given in terms of permanents of 3x3 matrices

Experimental progress: first small-scale experiments (2013)



Integrated multi-mode interferometers

• Challenge: stability of complex interferometers

• Solution: integrated interferometers with 

waveguides inscribed with lasers in glass:

• Beam splitting by evanescent-field coupling 

between close waveguides

• Phase shifs implemented by differences in path 

length

• 3D design technology 



Experimental progress: reconfigurability (2015-)

Fully reconfigurable 6-mode interferometer [Carolan et al., Science 349, 711 (2015)]

• Full reconfigurability in seconds by thermo-optic phase shifters

• 6-photon boson sampling (only 15 events)

• Automated experiments

Universal 12-mode reconfigurable chip
[Taballione et al., Materials for Quantum Technology 

1 (3), 035002 (2021)]

• Silicon nitrite

• 128 tunable thermo-optic phase 

shifters



Experimental progress: current state-of-the-art (2019)

• Boson Sampling experiment at University of Science and Technology of China 

(Chao-Yang Lu’s group) - H. Wang et al., Phys. Rev. Lett. 123, 250503 (2019)

- quantum-dot micropillar, demultiplexed solid state source

- Up to 14 photons detected

- Still simulable on a conventional computer



Photonic quantum advantage: Gaussian boson sampling (2020-21)

• Gaussian Boson Sampling experiment @ Univ. of Science and Technology of China 

(Hefei) - H. Wang et al., Science 370 (6523), 1460 (Dec. 2020), preprint arXiv:2106.15534 [quant-ph]

• Open questions:

• improved classical simulation, “faking” events using supercomputer

• Future: higher complexity regime, encoding qubits into continuous variables for 

scalable computation (Gottesman-Kitaev-Preskill encoding) – approach of 

Canadian company Xanadu

• GBS is a variation of boson sampling 

using squeezed light as inputs (higher 

event rate)

• Up to 73 photons, 100 modes

• v2: up to 113 photons, 144 modes (June 

2021)

• Simulation on supercomputer estimated to 

be 1024 times slower



Growing photonic cluster states for MBQC

• Using one-way model to advantage: building large resource states from probabilistic 

operations; at once or on the go

• Schemes for adapting imperfect clusters for MBQC

from: Browne et al., New J. Phys. 10, 023010 (2008)

from: Briegel et al., Nat. Phys. 5 (1), 19 

(2009)

from: O’Brien, Science 318, 1467 

(2007) 



Universal QC with measurement-based quantum computation

• Measurement-based quantum computation (MBQC) relies only on

• entangling gates;

• adaptive single-qubit measurements.

• Teleportation-based gates – states are teleported (and transformed) step by step

from: O’Brien, Science 318, 1467 (2007) 

• MBQC is uniquely suited to photonic quantum computation:

• Photons fly away fast…

• …so they are stored for short times, measured, and information teleported to 

fresh photons.

• Approach being pursued by US company PsiQuantum (> 3 billion US$ valuation)



• MBQC using 3-photon GHZ-state sources on-chip: [Rudolph, arXiv:160708535]

• (2+1)-dimensional architecture

• probabilistic entangling gates sufficient, if above percolation threshold (essential 

use of error correction)

• adaptive single-qubit measurements (delay lines)

Universal QC with measurement-based quantum computation

• Key advantages: room-temperature chips (small cryo units for e.g. detectors), 

compatible with major chip foundry techniques, i.e. potentially scalable



ERC Advanced Grant QU-BOSS (“Quantum 

advantage via non-linear Boson Sampling”)

2020-2025
• PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)

• Partners: Istituto de Fotonica e Nanotecnologie

(IFN-CNR – Milan), INL

H2020 FETOPEN PHOQUSING (“Photonic 
Quantum Sampling Machine”)

2020-2024

• PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)

• Partners: CNR (IT), CNRS (FR), Sorbonne Univ. 
(FR), Veriqloud (FR), QuiX BV (NL), INL

INL in 2 EC-funded projects on photonic quantum computation

• Development of complex linear and non-linear interferometers

• Theoretical characterization of photonic indistinguishability, resources such as contextuality and coherence

• Scalability of photonic QC, MBQC ideas

• Noisy, Intermediate-Scale Quantum (NISQ) computational applications: variational algorithms, 
randomness manipulation, cryptography, quantum chemistry



Conclusion

• Q. computers promise extreme computational speed-up for many problems

… and they’re already much faster than supercomputers at some contrived tasks

Thank you for your attention!

VS

• Q. computational advantage has (arguably) been demonstrated using 

superconducting chips and photonic systems

• Next steps:

• Practical applications in small-scale q. simulation, optimization, graph theory

• Scientific, technological, and engineering challenges to scale up QCs and 

incorporate quantum error correction for general applicability


