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Digital-Analog Paradigm
for Quantum Simulation & Quantum Computing

Digital Steps

% Single-qubit rotations
% Fixed-phase multiqubit gates
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Analog Blocks

% Discrete and continuous
harmonic oscillators

% Multiqubit evolution with

a continuous parameter t

\ DAQS and DAQC

Combination of digital steps and analog blocks

for quantum simulations and quantum computing
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% Stepwise digital-analog approach
% Banged approach

Let us allow complexity simulate and compute complexity







Digital-Analog Quantum Computing of QAOA

Approximating the Quantum Approximate Optimisation Algorithm
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The Quantum Approximate Optimisation Algorithm was proposed as a heuristic method for solv-
ing combinatorial optimisation problems on near-term quantum computers and may be among the
first algorithms to perform useful computations in the post-supremacy, noisy, intermediate scale era
of quantum computing. In this work, we exploit the recently proposed digital-analog quantum com-
putation paradigm, in which the versatility of programmable universal quantum computers and the
error resilience of quantum simulators are combined to improve platforms for quantum computation.
We show that the digital-analog paradigm is suited to the variational quantum approximate opti-
misation algorithm, due to its inherent resilience against coherent errors, by performing large-scale
simulations and providing analytical bounds for its performance in devices with finite single-qubit
operation times. We observe regimes of single-qubit operation speed in which the considered varia-
tional algorithm provides a significant improvement over non-variational counterparts.
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FIG. 1. The two schemes for digital analog computation.
a) The stepwise or sSDAQC scheme in which a series of pro-
grammable digital single qubit gates are applied in alterna-
tion with analog resource interactions. b) The always-on or
bDAQC scheme in which the resource interaction is never
turned off and single qubit operations are applied in parallel
with the resource interactions. Performing the single qubit
operations simultaneously with the resource interaction intro-
duces coherent errors but reduces device control requirements.
The first interaction block denoted with the time interval to
corresponds to the idle block.




(a) QAOA with C-ARB gates

Digital-Analog Quantum Computing of QAOA

Improving the Performance of Deep Quantum Optimization Algorithms
with Continuous Gate Sets
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Variational quantum algorithms are believed to be promising for solving computationally hard

problems and are often comprised of repeated layers of quantum gates. An example thereof is
the quantum approximate optimization algorithm (QAOA), an approach to solve combinatorial
optimization problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational
power from QAOA critically relies on the mitigation of errors during the execution of the algorithm,
which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate
an improvement of up to a factor of 3 in algorithmic performance as measured by the success
probability, by implementing a continuous hardware-efficient gate set using superconducting quantum H L L
circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical 25 50 2t
gate for each pair of qubits instead of decomposing it into two CZ-gates and single-qubit gates.
‘With this reduced number of physical gates, which scales with the number of layers employed in the Pulse |ength, 1 (ns) Cond. phase' ¢ (rad_)
algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied
to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399
operations and up to 9 layers. Our results demonstrate that the use of continuous gate sets may be
a key component in extending the impact of near-term quantum computers.
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FIG. 1. (a) Quantum circuit of a layer g of QAOA for the two-
qubit subspace |Q;Q;), using the controlled arbitrary-phase
gate (blue) to rotate the |11) state by an angle 2I';; where
Tij = 2v,J;5. (b) A QAOA layer with the phase-separation
unitary Ug decomposed into CZ gates (green) and additional
Hadamard gates and single-qubit Z-gates. (c) Excited-state




Partial quantum cloning ==> quantum artificial life (QAL)

How to reproduce in the lab quantum cloning quantum artificial life if they are forbidden?
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Quantum memristors for neuromorphic quantum technologies

Hodgkin-Huxley model
of neuron membrane
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@ Classical memristors

® history-dependent response/resistance

® processing and storage in the same device

® applications in neuromorphic computing,
learning circuits, memcomputing
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Quantum memristors

® memory feature in quantized circuits

® interplay of memory & quantum properties

® new paradigm and novel building block
for quantum technologies
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What is a quantum simulation?

Definition

Quantum simulation 1s the intentional reproduction of the quantum aspects of a
physical or unphysical model onto a typically more controllable quantum system.

Richard Feynman

Greek theatre

Mimesis or imitation 1s always partial,
this 1s the origin of creativity in science and arts

Let nature calculate for us

Quantum simulation <=> Quantum theatre



Why are quantum simulations relevant?

a) Because we can discover analogies between unconnected fields, producing a flood of
knowledge 1n both directions, e.g. black hole physics and Bose-Einstein condensates.

b) Because we can study phenomena that are difficult to access or even absent in nature,
e.g. Dirac equation: Zitterbewegung & Klein Paradox, unphysical operations.

¢) Because we can predict novel physics without manipulating the original systems,
some experiments may reach quantum supremacy: CM, QChem, QFT, ML, Al & AL.

d) Because we can contribute to the development of novel quantum technologies
via scalable quantum simulators and their merge with quantum computing.

¢) Because we are unhappy with reality, we enjoy arts and fiction 1n all 1ts forms:
literature, music, theatre, painting, quantum simulations.



Quantum Platforms for Quantum Simulations

Optical lattices

Superconducting circuits

... among several others, including some attractive hybrid ones!



The Jaynes-Cummings model in circuit QED and trapped ions



Quantum simulation of the Jaynes-Cummings model in circuit QED

We could also see the JC model in circuit QED as a quantum simulation:
the two-level atom 1s replaced by a superconducting qubit, called artificial atom.

ho
H, = 20 o.+hwa'a+ hg((fa + G‘a*)

Quantum simulations are never a plain analogy, cQED has advantages in qubit control
as in microwave CQED, but also longitudinal and transversal driving as in optical CQED.




Quantum simulation of the Jaynes-Cummings model in ion traps

The simplest and most fundamental model describing the coupling between
light and matter 1s the Jaynes-Cummings (JC) model 1n cavity QED.

—

_ h,

o.+hwa'a+ hg(c7+a + G‘aT) u(@ |-

We could consider the implementation of the JC model in trapped 1ons
as (one of) the first nontrivial quantum simulation(s).

H =mnQ (O'+aei¢’ +oae™” )

Red sideband excitation of the 1on = JC interaction

e O0O0C0CO0OO0O © Hb :hT]Qb (G+CZT€Z¢I) +G_Cl€_l¢b)

70 ym

Blue sideband excitation of the 1on = anti-JC interaction

H, = hv(a'a+ %)

The quantized electromagnetic field 1s replaced by quantized 1on motion



Analog quantum simulation of the quantum Rabi model in circuit QED



The quantum Rabi model: USC and DSC regimes

The quantum Rabi model (QRM) describes the dipolar light-matter coupling.
The JC model 1s the QRM after RWA, it 1s the SC regime of cavity/circuit QED.

_ hao,

o, +hwa'a+ hg(6+ + G")(a + aT)

The QRM is not used for describing usual experiments because the RWA 1is valid in
the microwave and optical regimes in quantum optics, where the JC model i1s enough.




Ultrastrong coupling regime of the ORM

We have recently seen the advent of the ultrastrong coupling (USC) regime
of light-matter interactions in cQED, where 0.1< g/w < 1, and RWA 1s not valid.

T. Niemczyk et al., Nature Phys. 6, 772 (2010)

P. Forn-Diaz et al., PRL 105, 237001 (2010)

- Current experimental efforts reach perturbative and nonperturbative USC regimes where g/w ~ 0.1-1.0

- Recently, the analytical solutions of the QRM were presented: D. Braak, PRL 107, 100401 (2011).

There are interesting and novel physical phenomena in the USC regime of the QRM:

a) Physics beyond RWA: Bloch-Siegert shifts, entangled ground states, among others.

oa+oa +0'a" +oa

b) Faster and stronger quantum operations

b.1) Ultrafast quantum gates (CPHASE) that may work at the subnanosecond scale

b.2) New regimes of light-matter coupling: Deep strong coupling (DSC) regime of QRM.



Deep strong coupling regime of the ORM

The DSC regime of the JC model happens when g/w > 1.0, and we can ask
whether such a regime could be experimentally reached or ever exist in nature.
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Forget about Rabi oscillations or perturbation theory:
parity chains and photon number wavepackets
define the physics of the DSC regime.
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J. Casanova, G. Romero, et al., PRL 105, 263603 (2010)



Is it possible to cheat technology or nature?

We may reach USC/DSC regimes in the lab but be unable to observe predictions,
mainly due to the difficulty in ultrafast on/off coupling switching.

What can we do then? Here, we propose two options:

a) We go brute force and try to design ultrafast switching techniques
that allow us to design a quantum measurement of relevant observables.

b) We could also reveal these regimes via quantum simulations.

b.1) Recently appeared several experiments realizing the quantum Rabi model
and light-matter coupling in USC/DSC regimes

b.2) Is 1t possible a quantum simulation of the QRM with access to all regimes?



Simulating USC/DSC regimes of the ORM

— Hp = h (™" o + Hee.) + I (e"?'0 + H.c.)

Hic = TUZ 1+ hwal a+ hg(o a—l—aaT)

Two-tone microwave driving

Leads to the effective Hamiltonian: QRM 1n all regimes

hf) h
H = h(w —wi)a'a - 2202 + Egax(a, +a")

A two-tone driving in cavity QED or circuit QED can turn any JC model
into a USC or DSC regime of the QRM model.

D. Ballester, G. Romero, et al., PRX 2, 021007 (2012)



Quantum simulation of relativistic quantum mechanics

d
1 +1 Dirac equation Zﬁ—¢ — (CUa;p + mCQUz)w

dt

Wef =W —wq =0 > Hp = —20,+ —=0zp

Hp =Hh Z Q; (@it Po £ He) ¢=x/2  Zitterbewegung, via measuring (X )(¢)
j R. Gerritsma et al., Nature 463, 68 (2010)

1+1 Dirac particle + Potential

Add a classical driving to the cavity

H=Hjc+h Z (Q e WitT 2ot 4 Hoe) 4+ hé(e ™ al + Hee.)

j=1,2 .
AS)s hg Klein paradox
Hef = ——0, — —=0yp + h\@ﬁi R. Gerritsma et al., PRL 106, 060503 (2011)

2 V2
Measuring (X ) to observe these effects

Quadrature moments have been measured at ETH and WMI:

E. Menzel et al., PRL 105, 100401(2010); C. Eichler et al., PRL 106, 220503 (2011)



Experimental AQS of ORM: KIT

Simulation scheme  Ballester PRX 2 (2012)

A A

H/h — 7(1 + waTb + g (FLZA)T + (3'+IA)) + G, (n1 coswit + 1z cos wat)

transversal microwave drives

® rotating frame with respect to w/1

& (}Z 117 ~ 7 A A —ws A —1(wy —ws
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® interaction picture in 741 /2 olx, basis change via Hadamard

transformation, constraint: w1 —wd2 =71
- effective Hamiltonian with wleff =wir—wil ~MHz
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Quantum simulation of relativistic quantum mechanics

Quantum state collapse and revival

qubit population
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Analog quantum simulation of OQRM in trapped ions

- ZUQ + —10,1 @ T -+ _—idpt Wy = wWo — V + 51"
H = hT(CLO' € + HC) +h 9 (CL g e —|—HC) Wy = wo + U + O,
Interaction picture
[\ )
O — O Oy + 0 1S
H=nh r2 bata — R r4 bUerhnT(@JraT)(UJF_U_)
\_ J

: - 1 1
High tunability — wi' = =5 (0r + ), wh = S0 = &), 9= -

Interaction picture transformation commutes
with the observables of interest o, a'a

J. S. Pedernales et al., Sci. Rep. 5, 15472 (2015)



Coupling regimes of the ORM
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Cover of the special 1ssue on the quantum Rabi model

in Journal of Physics A, 2016-17
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Probability distribution of the
QRM ground state for g/w = 2
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L.5 Analog quantum simulation of the Dirac equation in trapped ions



Quantum simulation of the Dirac equation with trapped ions

Basic interactions in trapped ions

a) The carrier excitation: (

H, =hQo,=hQ(c"e’+07¢™)

b) The red sideband excitation:

H =hmnQ (O'+ae"p’ +oale™ )
c¢) The blue sideband excitation:

H,=mnQ, (G+afel¢” +0 ae " )

9=0—H, =hQo,

p=———>H

d) The linear superposition of red and blue sideband excitations:

H ., = hnfl6¢ (ax+Bp,) with

X =

s, = N0,

@ 00000 O

Dy,



Simulating the Dirac equation

a) The linear superposition of carrier, red and blue sideband excitations, yield an effective Hamiltonian
corresponding to the 1+1 Dirac Hamiltonian for a free particle:

( ~ )
. ~ hQ 2NAQ

ihid):Hl’;’”(b:(ZnAQprx+hQGZ)¢: 3 Lt 9,
ot \ 2NAQp.  —hQ

to be compared with the original:

5 [, A
. mc~  cp,
lh—¢=HD¢=(Cprx+mCZGZ)¢= . |9
ot X cp, —mc ) e 000000 ©
(

, hQ = mc’

producing the parameter correspondence: ) -
2NAQ =c

b) Similar steps produce the quantum simulation of higher dimensional Dirac equations

L. Lamata, J. Ledn, T. Schitz, and E. Solano, PRL 98, 253005 (2007)



c¢) If we consider the relativistic limit, me’ < Ccp, (m — O) , the Dirac dynamics produces
constantly growing Schrodinger cats as in quantum optical systems:

H =2nAQo p, +hQo. — HY'=2nAQo p,

See, for example, Solano et al., PRL (2001), Solano et al., PRL (2003), Haljan et al., PRL (2005),
and Zahringer et al., PRL (2010).

d) If we consider now the nonrelativistic limit, mc” > Cp., , the Dirac dynamics would be happy
to have a quantum optician calculating the second-order effective Hamiltonian:

2 2
H] = 277AQ(G+e2iQ[ + G_e_mt)px —>H_ =0. Py =0, P
759 2m
2N*A’Q?
with simulated mass m = VZSE 5 M
21°C2

This 1s a free Schrodinger dynamics derived from the nonrelativistic limit of the Dirac equation!



e) The Zitterbewegung (ZB) is a jittering motion of the expectation value of the position operator <x(t)> :
It appears as a consequence of the superposition of positive and negative energy components.

In the Heisenberg picture, we can write the evolution of the Dirac position operator

Csz Fa ihe (e2iHDt/h _1) o - P,
H 2H, H

D D

f) The prediction of ZB 1s considered controversial, see several papers appeared in the last few years
questioning existence/absence. The predicted ZB frequency/amplitude for our “relativistic” 1on are

_ ~ 2 2
o ~2|Ep| 17 =2\ pic* + me /h=2\/(2nAgpo) [h+Q o, ~0_10°H2
h /mcz\2 nhZQQA

. X, ~0—10° A
2 ome\ E, ) T 4P @Ap? + 20

~ A

From a theoretical point of view, the quantum simulation of the ZB looked cool!

However, the ZB amplitude was disappointing: how can one measure in the lab the ion position as a
function of the interaction time with a resolution beyond the width of the motional ground state?



g) The answer to the previous question is: designing a highly precise measurement of the ion position!

We had proposed in 2006 such a method called “instantaneous” measurements for CQED and trapped ions.

If the 1nitial state of the probe qubit and the unknown motional system is
1
pun@=[4)(4lp, where [+)=—=(1g)+]e)

it can be proved that after a red-sideband excitation during an interaction time ““t”

dP, (1)

(x(1)) = where  P,(t)=Tr[p,_,(t)]e){e]]

t=0

It 1s possible to encode relevant motional system observables in the short-time dynamics of
the probe qubit, in fact we can get the full wavefunction from the first and second derivatives at t=0!

We have produced several papers studying different results for the “instantaneous” measurements.
Some of them are theoretical and some of them have already seen the light of experiments.

Lougovski et al., Eur. Phys. J. D (2006); Bastin et al., J. Phys. B: At. Mol. Opt. Phys. (2006); Franca Santos et al., PRL (2006);
Gerritsma et al., Nature (2010), Zahringer et al., PRL (2010); Casanova et al., PRA 81, 062126 (2010).
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R. Gerritsma et al., Nature (2010)
F. Zahringer et al., PRL (2010)



h) We have also proposed the quantum simulation of the Klein Paradox

ihicb =H, D= (Cprx +0ox + mCZGZ)CI)

ot
0.25 ‘a ‘d
| Ops | Ous 110
0 =10
o AT
E 400us \'\(/
=
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800us
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| | [ ‘ | | | |
-10 0 10 -10 0 10 -10 0 10 -10 0 10
-
z(A) O |@in/a) 8

The Dirac Linear Potential 1s not always reflecting the particle. This amounts to a Klein Paradox behavior,
where the particle can move from positive to negative energy components via tunneling.

J. Casanova et al., PRA 82, 020101(R) (2010); R. Gerritsma et al., PRL 106, 060503 (2011).



