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Digital-Analog Quantum Computing of QAOA

Enhanced quantum volume and save coherence time



Digital-Analog Quantum Computing of QAOA

Interesting use of Arbitrary-Phase Gates



Partial quantum cloning ==> quantum artificial life (QAL)

How to reproduce in the lab quantum cloning quantum artificial life if they are forbidden?
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Quantum memristors

• memory feature in quantized circuits 
• interplay of memory & quantum properties 
• new paradigm and novel building block 

for quantum technologies

Classical memristors

• history-dependent response/resistance 
• processing and storage in the same device 
• applications in neuromorphic computing, 

learning circuits, memcomputing

Quantum memristors for neuromorphic quantum technologies



What is a quantum simulation?

Definition
Quantum simulation is the intentional reproduction of the quantum aspects of a 

physical or unphysical model onto a typically more controllable quantum system.

Richard Feynman

Let nature calculate for us

Quantum simulation <=> Quantum theatre

<=>

Greek theatre

Mimesis or imitation is always partial, 
this is the origin of creativity in science and arts



Why are quantum simulations relevant? 

a) Because we can discover analogies between unconnected fields, producing a flood of 
knowledge in both directions, e.g. black hole physics and Bose-Einstein condensates. 

b) Because we can study phenomena that are difficult to access or even absent in nature, 
e.g. Dirac equation: Zitterbewegung & Klein Paradox, unphysical operations.

c) Because we can predict novel physics without manipulating the original systems, 
some experiments may reach quantum supremacy: CM, QChem, QFT, ML, AI & AL.

e) Because we are unhappy with reality, we enjoy arts and fiction in all its forms: 
literature, music, theatre, painting, quantum simulations.

d) Because we can contribute to the development of novel quantum technologies 
via scalable quantum simulators and their merge with quantum computing.



Trapped ions

Optical lattices Superconducting circuits

Quantum photonics

Quantum Platforms for Quantum Simulations

… among several others, including some attractive hybrid ones!



The Jaynes-Cummings model in circuit QED and trapped ions



We could also see the JC model in circuit QED as a quantum simulation: 
the two-level atom is replaced by a superconducting qubit, called artificial atom.

Quantum simulations are never a plain analogy, cQED has advantages in qubit control 
as in microwave CQED, but also longitudinal and transversal driving as in optical CQED.

 
HJC =

ω0

2
σ z + ω a†a + g σ +a +σ −a†( )

Quantum simulation of the Jaynes-Cummings model in circuit QED



Quantum simulation of the Jaynes-Cummings model in ion traps

The simplest and most fundamental model describing the coupling between 
light and matter is the Jaynes-Cummings (JC) model in cavity QED.

 
Hr = η Ωr σ +aeiφ r +σ −a†e− iφ r( )

Red sideband excitation of the ion = JC interaction

 
Hb = η Ωb σ +a†eiφ b +σ −ae−iφ b( )

Blue sideband excitation of the ion = anti-JC interaction

We could consider the implementation of the JC model in trapped ions 
as (one of) the first nontrivial quantum simulation(s).

 
H0 = ν(a

†a + 1
2
)

The quantized electromagnetic field is replaced by quantized ion motion

 
HJC =

ω0

2
σ z + ω a†a + g σ +a +σ −a†( )



Analog quantum simulation of the quantum Rabi model in circuit QED



The quantum Rabi model (QRM) describes the dipolar light-matter coupling. 
The JC model is the QRM after RWA, it is the SC regime of cavity/circuit QED.

 
HRabi =

ω0

2
σ z + ω a†a + g σ + +σ −( ) a + a†( )

The QRM is not used for describing usual experiments because the RWA is valid in 
the microwave and optical regimes in quantum optics, where the JC model is enough.

The quantum Rabi model: USC and DSC regimes



There are interesting and novel physical phenomena in the USC regime of the QRM: 

a) Physics beyond RWA: Bloch-Siegert shifts, entangled ground states, among others.

σ †a +σa† +σ †a† +σa

b.2) New regimes of light-matter coupling: Deep strong coupling (DSC) regime of QRM.

b) Faster and stronger quantum operations 

b.1) Ultrafast quantum gates (CPHASE) that may work at the subnanosecond scale

We have recently seen the advent of the ultrastrong coupling (USC) regime 
of light-matter interactions in cQED, where 0.1< g/w < 1, and RWA is not valid.

- Current experimental efforts reach perturbative and nonperturbative USC regimes where g/w ~ 0.1-1.0 
- 

- Recently, the analytical solutions of the QRM were presented: D. Braak, PRL 107, 100401 (2011).

T. Niemczyk et al., Nature Phys. 6, 772 (2010) 

P. Forn-Díaz et al., PRL 105, 237001 (2010)

Ultrastrong coupling regime of the QRM



Deep strong coupling regime of the QRM

The DSC regime of the JC model happens when g/w > 1.0, and we can ask 
whether such a regime could be experimentally reached or ever exist in nature.

chains break into the known Jaynes-Cummings doublets
fjg; na þ 1i; je; naig because we enter into the domain of
applicability of the RWA.

We introduce the parity basis jp; nbi, where bybjnbi ¼
nbjnbi, and b ¼ !xa such that bjp; nbi ¼

ffiffiffiffiffi
nb

p jp; nb # 1i.
Using this basis, the Hamiltonian in Eq. (1) can be
written as

H ¼ @!bybþ @gðbþ byÞ # @!0

2
ð#1Þbyb!: (4)

This Hamiltonian commutes with the parity operator !,
and for each parity chain (p ¼ &1) there is an independent
Hamiltonian describing a perturbed harmonic oscillator.

Note that the term#@!0ð#1Þbyb!=2 behaves as an energy
shift proportional to !0. In the DSC regime, we can get rid
of the term @gðbþ byÞ in Eq. (4) by changing to the basis

Dð#"0Þjp; nbi, with Dð"0Þ ¼ e"0b
y#"'

0b and "0 ¼ g=!.
The eigenenergies and eigenfunctions can be approxi-
mated as a series in !0=!

E"0
p;nb=@(!nb#g2=!#!0

2
pð#1Þnb"nbnb

þ
X

mb!nb

!2
0

4!ðnb#mbÞ
j"nbmb

j2þOð!3
0=!

3Þ: (5)

Alternative approximations can be found in the literature
[21]. To first order we get a displacement in the energy
levels due to the coupling "nbnb ¼ hnbjDð2"0Þjnbi, a

correction which is much smaller than 1, j"nbmb
j )

2#ðnbþmbÞ: Note that this formalism is rigorously valid in
the DSC regime.

We study now the DSC dynamics with the initial state
jc ð0Þi ¼ jþ; 0bi ¼ jg; 0ai, as we activate the interaction
in Eq. (4). We observe that the photon statistics PnbðtÞ will
spread independently along each parity chain, eventually
reaching an energy barrier and bouncing repeatedly.
Remarkably, an intuitive picture can be found, as displayed
in Figs. 1 and 2, that provides physical insight into a
problem that is, in general, analytically intractable. Note
that, in Figs. 1(a) and 1(b), the round trip of the initial
photon number wave packet induces collapse revivals that
are not reminiscent of the SC regime of the JC model [2],
where initial large coherent states are required. In the DSC
limit, with !0 ¼ 0, this intuitive picture can be rigorously
confirmed integrating the evolution

jc ðtÞi¼Dyð"0Þe#ið!byb#g2=!ÞtDð"0Þjþ;0bi¼Uðt;!0¼0Þ
* jc ð0Þi¼eiðg

2=!Þte#iðg=!Þ2 sinð!tÞjþ;"ðtÞi; (6)

where "ðtÞ ¼ "0ðe#i!t # 1Þ is the amplitude of a coherent
state. The revival probability of the initial state reads

Pþ0bðtÞ ¼ jhc ð0Þjc ðtÞij2 ¼ e#j"ðtÞj2 ; (7)

exhibiting periodic collapses and full revivals [28]. When
the initial state is jþ; 2bi ¼ jg; 2ai, as in Fig. 1(c), the DSC

dynamics generates counterpropagating photon number
wave packets in both directions that bounce back and forth
producing interference secondary peaks. Similar intuition
follows when considering initial superposition states, e.g.,
ðjþ; 0biþ jþ; 2biÞ=

ffiffiffi
2

p
, as long as the state components

belong to the same parity chain, otherwise no secondary
peaks appear. When we break the qubit degeneracy,
!0 ! 0, the intuitive picture remains but we lose the
integrability of the problem. Probability still spreads along
each parity chain, as seen in Fig. 2, but now the photon
number wave packet suffers self-interference, it distorts
and its center no longer follows the periodic orbits of
!0 ¼ 0 The result are full collapses and partial revivals

FIG. 1 (color online). (a),(b) Round trip of a photon number
wave packet and collapse revivals due to DSC dynamics with
initial state jþ; 0bi ¼ jg; 0ai. (c) Collapse revivals with second-
ary peaks due to counterpropagating photon number wave pack-
ets starting in initial state jþ; 2bi ¼ jg; 2ai. For all cases,!0 ¼ 0
and g=! ¼ 2.

FIG. 2 (color online). (a) Photon statistics at different times of
the evolution with !0 ¼ 0:5!. (b) Comparison of probability
Pþ;0b ðtÞ calculated for !0 ¼ 0 (solid line) and !0 ¼ 0:5!
(dashed line). In all simulations the initial state is jþ; 0bi and
g=! ¼ 2.

PRL 105, 263603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

263603-2

Forget about Rabi oscillations or perturbation theory: 
parity chains and photon number wavepackets 

define the physics of the DSC regime.

J. Casanova, G. Romero, et al., PRL 105, 263603 (2010)



We may reach USC/DSC regimes in the lab but be unable to observe predictions, 
mainly due to the difficulty in ultrafast on/off coupling switching.

What can we do then? Here, we propose two options: 

a) We go brute force and try to design ultrafast switching techniques 
that allow us to design a quantum measurement of relevant observables. 

b) We could also reveal these regimes via quantum simulations.

b.1) Recently appeared several experiments realizing the quantum Rabi model 
and light-matter coupling in USC/DSC regimes

Is it possible to cheat technology or nature?

b.2) Is it possible a quantum simulation of the QRM with access to all regimes?



Simulating USC/DSC regimes of the QRM

Two-tone microwave driving

Leads to the effective Hamiltonian: QRM in all regimes

D. Ballester, G. Romero, et al., PRX 2, 021007 (2012)

HJC =
~!q

2
�z + ~!a†a+ ~g(�†a+ �a†)

HD = ~⌦1(e
i!1t� +H.c.) + ~⌦2(e

i!2t� +H.c.)

H = ~(! � !1)a
†a+

~⌦2

2
�z +

~g
2
�x(a+ a†)

A two-tone driving in cavity QED or circuit QED can turn any JC model 
into a USC or DSC regime of the QRM model.



Quantum simulation of relativistic quantum mechanics

1+1 Dirac equation

� = ⇡/2 Zitterbewegung, via measuring
R. Gerritsma et al., Nature 463, 68 (2010)

!e↵ = ! � !1 = 0 HD =
~⌦2

2
�z +

~g
p
2
�xp

HD = ~
X

j

⌦j(e
i(!jt+�)� +H.c.) hXi(t)

1+1 Dirac particle + Potential 

Add a classical driving to the cavity

He↵ =
~⌦2

2
�z �

~g
p
2
�yp̂+ ~

p

2⇠x̂

H = HJC + ~
X

j=1,2

(⌦je
�i(!jt+�j)�†

+H.c.) + ~⇠(e�i!1ta† +H.c.)

Klein paradox

    Measuring        to observe these effects

R. Gerritsma et al., PRL 106, 060503 (2011)

Quadrature moments have been measured at ETH and WMI: 

E. Menzel et al., PRL 105, 100401(2010); C. Eichler et al., PRL 106, 220503 (2011)

hXi

i~d 
dt

= (c�xp+mc2�z) 



Simulation	scheme	

  rotating	frame	with	respect	to	 "↓1 	

  interaction	picture	in	 %↓1 /2 '↓( ,	basis	change	via	Hadamard	
transformation,	constraint:	"↓1 − "↓2 = %↓1  	 	 	

	 									à	effective	Hamiltonian	with	 "↓)** ≡ "↓+ − "↓1 ≈MHz	

	

transversal microwave drives 

Ballester PRX 2 (2012) 

~ MHz ~ MHz 5 MHz 

Experimental AQS of QRM: KIT



Quantum	state	collapse	and	revival	

5 MHz 2.5 MHz 

"↓1 =5 µs 
'↓( =13000 

Quantum simulation of relativistic quantum mechanics



+~ i⌘⌦
2

(a†�+e�i�bt +H.c.)H = ~ i⌘⌦
2

(a�+e�i�rt +H.c.)

H = ~�r � �b

2
a
†
a� ~�r + �b

4
�z + ~ i⌘⌦

2
(a+ a

†)(�+ � �
�)

Interaction picture

J. S. Pedernales et al., Sci. Rep. 5, 15472 (2015)

!R
0 = �1

2
(�r + �b), !R =

1

2
(�r � �b), g =

⌘⌦

2

Interaction picture transformation commutes 
with the observables of interest �z, a†a

High tunability

⌫

!0
!r = !0 � ⌫ + �r
!b = !0 + ⌫ + �b

Analog quantum simulation of QRM in trapped ions



1. JC
g ⌧ |!R|, |!R

0 |
|!R � !R

0 | ⌧ |!R + !R
0 |

|!R � !R
0 | � |!R + !R

0 |
g ⌧ |!R|, |!R

0 |2. AJC

g < |!R|, |!R
0 |, |!R � !R

0 |, |!R + !R
0 |

3. Dispersive regime

4. USC

5. DSC |!R| < g

|!R
0 | ⌧ g ⌧ |!R|

6. Decoupling regime

|!R
0 | ⇠ g ⌧ |!R|

7. Open to study

!R = 0Dirac equation

g < |!R| < 10g

Coupling regimes of the QRM



Cover of the special issue on the quantum Rabi model 
in Journal of Physics A, 2016-17



Adiabatic generation of 
entangled ground state of QRM

Probability  distribution  of  the 
QRM  ground  state for  g/! = 2



I.5 Analog quantum simulation of the Dirac equation in trapped ions



Basic interactions in trapped ions 
 
a) The carrier excitation: 

 

Hσφ
= Ωσφ = Ω σ +eiφ +σ −e−iφ( )

φ = 0→ Hσ x
= Ωσ x

φ = − π
2
→ Hσ y

= Ωσ y

⎧

⎨
⎪

⎩
⎪

b) The red sideband excitation: 

 
Hr = η Ωr σ +aeiφ r +σ −a†e−iφ r( )

 
Hb = η Ωb σ +a†eiφ b +σ −ae−iφ b( )

c) The blue sideband excitation: 

 
x = 

2Mν
a† + a( ) = Δ a† + a( )

d) The linear superposition of red and blue sideband excitations: 

 Hr+b = η Ωσφ αx + βpx( )
 
px = i

Mν
2

a† − a( ) = i
2Δ

a† − a( )
with 

Quantum simulation of the Dirac equation with trapped ions



a) The linear superposition of carrier, red and blue sideband excitations, yield an effective Hamiltonian 
corresponding to the 1+1 Dirac Hamiltonian for a free particle: 

 

i ∂
∂t
φ = HD

ionφ = 2ηΔ Ωσ x px + Ωσ z( )φ =
Ω 2ηΔ Ω px

2ηΔ Ω px −Ω

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ φ,

 

i ∂
∂t
φ = HDφ = cσ x px +mc

2σ z( )φ =
mc2 cpx
c px −mc2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
φ

to be compared with the original: 

 

Ω = mc2

2ηΔ Ω = c

⎧
⎨
⎪

⎩⎪
producing the parameter correspondence: 

b) Similar steps produce the quantum simulation of higher dimensional Dirac equations 

L. Lamata, J. León, T. Schätz, and E. Solano, PRL 98, 253005 (2007)

Simulating the Dirac equation



c) If we consider the relativistic limit,                                     , the Dirac dynamics produces 
     constantly growing Schrödinger cats as in quantum optical systems:  mc

2  cpx m→ 0( )

 HD
ion = 2ηΔ Ωσ x px + Ωσ z → HD

rel= 2ηΔ Ωσ x px
See, for example, Solano et al., PRL (2001), Solano et al., PRL (2003), Haljan et al., PRL (2005), 

and Zähringer et al., PRL (2010). 

d) If we consider now the nonrelativistic limit,                    , the Dirac dynamics would be happy 
to have a quantum optician calculating the second-order effective Hamiltonian: 

 mc
2  cpx

 

HD
I = 2ηΔ Ω σ +e2iΩt +σ −e−2iΩt( )pxz → H eff=σ z

px
2

Ω
2η2Δ2 Ω2

⎛

⎝
⎜

⎞

⎠
⎟
=σ z

px
2

2m

 
withsimulated mass m = νΩ

2η2 Ω2 M

This is a free Schrödinger dynamics derived from the nonrelativistic limit of the Dirac equation!



e) The Zitterbewegung (ZB) is a jittering motion of the expectation value of the position operator           . 
     It appears as a consequence of the superposition of positive and negative energy components. 

In the Heisenberg picture, we can write the evolution of the Dirac position operator  

 
x(t) = x(0)+ c

2 px
HD

t + ic
2HD

e2iHDt / −1( ) σ x −
cpx
HD

⎛

⎝
⎜

⎞

⎠
⎟

x(t)

From a theoretical point of view, the quantum simulation of the ZB looked cool! 

However, the ZB amplitude was disappointing: how can one measure in the lab the ion position as a 
 function of the interaction time with a resolution beyond the width of the motional ground state?

f) The prediction of ZB is considered controversial, see several papers appeared in the last few years 
    questioning existence/absence. The predicted ZB frequency/amplitude for our “relativistic” ion are 

 

ωZB  0 −10
6Hz

xZB  0 −10
3 A


 

!
ZB
~ 2 E

D
/ ! = 2 p

0

2
c
2 + m2

c
4
/ ! " 2 2#$ "%p

0( )
2

/ ! +%2

 

x
ZB
~
!

2mc

mc
2

E
D

!

"#
$

%&

2

'
(!2 "))*

4(2 ")2*2 p
0

2
+ !

2)2
~ *



!
at"m (0) = + + !

m
!!!where!!! + =

1

2
g + e( )

x(t) =
dP

e
(t)

dt
t=0

!!where!!!!P
e
(t) = Tr !

at"m (t) e e#$ %&

Lougovski et al., Eur. Phys. J. D (2006); Bastin et al., J. Phys. B: At. Mol. Opt. Phys. (2006); Franca Santos et al., PRL (2006); 
Gerritsma et al., Nature (2010), Zähringer et al., PRL (2010); Casanova et al., PRA 81, 062126 (2010). 

g) The answer to the previous question is: designing a highly precise measurement of the ion position! 

We had proposed in 2006 such a method called “instantaneous” measurements for CQED and trapped ions. 

If the initial state of the probe qubit and the unknown motional system is 

it can be proved that after a red-sideband excitation during an interaction time “t” 

It is possible to encode relevant motional system observables in the short-time dynamics of 
the probe qubit, in fact we can get the full wavefunction from the first and second derivatives at t=0! 

We have produced several papers studying different results for the “instantaneous” measurements. 
Some of them are theoretical and some of them have already seen the light of experiments. 



“Instantaneous” measurements of ZB 
with sub-Δ resolution and beyond the diffraction limit. 

Reconstruction of absolute square wavefunction 
 of quantum walks in trapped ions. 

R. Gerritsma et al., Nature (2010) 
F. Zähringer et al., PRL (2010) 



h) We have also proposed the quantum simulation of the Klein Paradox 

 
i ∂
∂t
Φ = HDLPΦ = cσ x px +αx +mc

2σ z( )Φ

The Dirac Linear Potential is not always reflecting the particle. This amounts to a Klein Paradox behavior, 
where the particle can move from positive to negative energy components via tunneling. 

J. Casanova et al., PRA 82, 020101(R) (2010); R. Gerritsma et al., PRL 106, 060503 (2011). 
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