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Variational Quantum Algorithms

Variational Quantum Algorithms (VQAs) are a class of hybrid
quantum-classical algorithms that employ a classical optimizer to
train a parametrized quantum circuit and provide a general
framework that can be used to solve a wide array of problems.

VQAs emerged as the leading strategy to obtain quantum
advantage on NISQ devices.
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Variational Quantum Algorithms

Figure: Schematic diagram of a Variational Quantum Algorithm (VQA).
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QAOA Algorithm

Quantum Approximate Optimization Algorithm: in its
first publication by Farhi et al [FGG14] the QAOA was an
approximate optimization algorithm, whose behaviour was
based in the alternated application of a Hamiltonian based in
a cost function and a Mixing Hamiltonian.

Quantum Alternating Operator Ansatz: the QAOA
framework was later expanded by Hadfield et al [HWO+19] so
that it would allow families of more general operators.
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QAOA Circuit

HP ⇒ e−iγHP = UP(γ) HM ⇒ e−iβHM = UM(β)

QAOAp(β, γ) = UM(βp)UP(γp) . . .UM(β1)UP(γ1)

|β, γ⟩ = QAOAp(β, γ) |s⟩

|s1⟩

UP(γ1) UM(β1)

. . .

UP(γp) UM(βp)...
. . . ...

|sn⟩ . . .

Figure: QAOA quantum circuit

5 / 18



Initial State

Design criteria: The initial state must be feasible and trivial,
O(1) or O(log n), to implement

|+ . . .+⟩-state O(1)

|0⟩ H |s1⟩

|0⟩ H |s2⟩
...

...
|0⟩ H |sn⟩

Feasible State O(1)

|01,1⟩ x |s1,1⟩
...

...
|01,k⟩ |s1,k⟩

...
...

|0n,1⟩ |sn,1⟩
...

...

|0n,k⟩ x |sn,k⟩
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Initial State

W-state O(log n)

|0⟩ |s1⟩

|0⟩ RY RY RZ RZ • |s2⟩

|0⟩ RY RZ • • • RX |s3⟩

3-Qubit W-state: |100⟩+ |010⟩+ |001⟩
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Phase separation operator

Design criteria: We require the family of phase separation
operators UP(γ) to be diagonal in the computational basis. Most
of the time the operator will take the form UP(γ) = e−iγHP , where
HP is the Problem Hamiltonian of the classic objective function f .

|ψ1⟩

UP(γ)

|ψ′
1⟩

|ψ2⟩ |ψ′
2⟩

...
...

|ψn⟩ |ψ′
n⟩
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Mixing Unitaries (Mixers)

Design criteria: The mixing operators must preserve feasible
space and explore the feasible space.

|ψ1⟩

UM(β)

|ψ′
1⟩

|ψ2⟩ |ψ′
2⟩

...
...

|ψn⟩ |ψ′
n⟩
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Mixers

X-Mixer : HM =
∑
j
Xj

UM(β) = e−iβHM =
∏
j

e−iβXj

XY-Mixer : HM =
∑
i ,j

XiXj + YiYj

UM(β) = e−iβHM =
∏
i ,j

e−iβXiXj+YiYj
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QAOA Classical part

The expectation value ⟨x |HP |x⟩ of the problem Hamiltonian is
estimated by taking the average of the states obtained by the
measurements.

⟨x |HP |x⟩ ≡ f (x)

The expectation value is then optimized using a classical
optimization method over the 2p parameters γ and β.
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QAOA Classical part

Off-the-shelf gradient-free [WHT16, MW19, AASG20]

Off-the-shelf gradient-based [VGS+20, ZWC+20, MC21]

Deep Reinforcement Learning [KSC+20]

Metalearning [YWZ+21]

A recent study [FPCV+21] showed that some algorithms which
have great performance with QAOA are Adam, Conjugate
Gradient, COBYLA, Nelder-Mead, Powell and SPSA.
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Practical Example - MaxCut
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