IV Workshop de Computacdo Quantica - UFSC
QAOA Algorithm

Otto Menegasso Pires
otto28mai@gmail.com

25/10/2021

PN

\GlE©)

Grupo de Computacéo Quan

UNIVERSIDADE FEDERAL
DE SANTA CATARINA



mailto:otto28mai@gmail.com

Variational Quantum Algorithms

Variational Quantum Algorithms (VQAs) are a class of hybrid
quantum-classical algorithms that employ a classical optimizer to
train a parametrized quantum circuit and provide a general
framework that can be used to solve a wide array of problems.

VQAs emerged as the leading strategy to obtain quantum
advantage on NISQ devices.




Variational Quantum Algorithms
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Figure: Schematic diagram of a Variational Quantum Algorithm (VQA).
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QAOA Algorithm

@ Quantum Approximate Optimization Algorithm: in its
first publication by Farhi et al [FGG14] the QAOA was an
approximate optimization algorithm, whose behaviour was
based in the alternated application of a Hamiltonian based in
a cost function and a Mixing Hamiltonian.

@ Quantum Alternating Operator Ansatz: the QAOA
framework was later expanded by Hadfield et al [HWO™19] so
that it would allow families of more general operators.
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QAOA Circuit
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Figure: QAOA quantum circuit
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Initial State

Design criteria: The initial state must be feasible and trivial,
O(1) or O(log n), to implement
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Initial State

W-state O(log n)
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Phase separation operator

Design criteria: We require the family of phase separation
operators Up(7) to be diagonal in the computational basis. Most
of the time the operator will take the form Up(y) = e "7HP  where
Hp is the Problem Hamiltonian of the classic objective function f.
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Mixing Unitaries (Mixers)

Design criteria: The mixing operators must preserve feasible
space and explore the feasible space.
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Mixers

o X-Mixer: Hy =Y X;
J
Un(B) = e~ =TT e#%
J

o XY-Mixer: Hy =Y XiX;+ YiV;
iJ

Um(B) = e "FHm = H o IBXX YY)
i
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QAOA C(lassical part

The expectation value (x| Hp |x) of the problem Hamiltonian is
estimated by taking the average of the states obtained by the

measurements.
(x| Hp [x) = f(x)

The expectation value is then optimized using a classical
optimization method over the 2p parameters v and S.
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QAOA Classical part

o Off-the-shelf gradient-free [WHT16, MW19, AASG20]
o Off-the-shelf gradient-based [VGS*20, ZWC*20, MC21]
@ Deep Reinforcement Learning [KSC*20]

@ Metalearning [YWZ121]

A recent study [FPCV'21] showed that some algorithms which
have great performance with QAOA are Adam, Conjugate
Gradient, COBYLA, Nelder-Mead, Powell and SPSA.




Practical Example - MaxCut
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